Eco-Dorm Retrofit

Nadim Atalla, Emilia Chojkiewicz, Chris Jernigan, Nick Kardous, Brigitte von Oppenfeld, Cassie Yuan

Mission Statement: Reduce energy waste in Duke dormitories

Approach

Fenestration Analysis

Heat Conduction

Assumptions:

Double-paned, regular emissivity windows with air between panes

U_{glass} (provided by manufacturer) accounts for both conductance and radiation

Air Leakage

 $Q_{leakage} = c_p m \Delta T$

Assumptions:

Steady, incompressible flow of air

Frictional losses are negligible

Weather tape reduces energy losses by 20%

Solar Heat Gain

$$\dot{Q}_{gain}$$
=IA au

Assumptions:

Extrapolated weather data is accurate

No losses due to shading

Only August insolation considered

Solar Analysis

Monthly solar electricity generated calculated by:

NREL's System Advisor Model (SAM)

RDU weather data

Heat gained by thermal:

GA weather data

System Sizing								
O Specify desired array size O Specify mode					nd inverters			
Desired array size	4	kWdc Modules per s		les per stri	ng 8			
DC to AC ratio	1.20)	Strings in parall		lel 3			
			Numbe	er of inverte	ers 1]		
Configuration at Reference Conditions								
Modules Inverters				Sizing messages (see Help for details):				
Nameplate capacity	4.681 kWc	tc Total capacity	3.800	kWac	Actual DC to AC r	atio is 1.23.		
Number of modules	24	Total capacity	3.928	kWdc				
Modules per string	8	Number of inverters	1					
Strings in parallel	3	Maximum DC voltage	600.0	Vdc				
Total module area	30.6 m ²	Minimum MPPT voltage	250.0	Vdc				
String Voc	363.5 V	Maximum MPPT voltage	480.0	Vdc r	Voltage and capacity reference conditions	ratings are at module shown on the Module		
String Vmp	295.5 V	Battery maximum power	0.000	kWdc ^p	page.			
Orientation								
Azimuth Tilt		Array	type F	Fixed roof mount				
	/ ^{- 9}	Ō``		Tilt	26	degrees		
W 270	Е 90	Horiz	Azi	muth	160	degrees		
Š 180	· · · ·	Ground o	coverage	ratio	0.4			

Solar Analysis

Efficiencies

15% efficiency of PV

35% efficiency of thermal

0.5% electrical output loss per 1°C

Assumptions

100% efficiency in electricity transformation

100% efficiency of heat transfer through piping

1 0

Fenestration Results

Annual energy saved from fenestration retrofit:

45,000 kWh

Solar Results

7300 kWh

Viability Testing

Fenestration Viability Testing

Actual energy use summer 2016 (kBtu)	1,670,000
% Energy loss due to fenestration	54.4 %
Energy saved from fenestration retrofit over the summer (kBtu)	153,000
Energy saved from fenestration retrofit over the summer (kWh)	45,000
% Energy saved	16.9 %

Film Testing

VOLTAGE DROPS FOR THREE FILMS

Solar Viability Testing

Electricity Generated by Solar Panels

SAM Insolation Model

Total Energy Production **Insolation Model** 7100 kWh SAM 7300 kWh

Economic Impact

Annual energy saved from fenestration	45,000 kWh	
Money Saved		\$3,350
Total cost		\$21,340
# of years to break even		6.4
Annual energy saved from solar retrofit		15,700 kWh
Money Saved Total cost		\$1,200 \$33,700
# of years to break even		28.8

Environmental Impact

Next Steps

Recalculating results with regular PV panels instead of the overly sophisticated PV/T

Expand fenestration model to include winter for more accurate approximation of annual energy savings

Sharing findings with Facilities Management to assess implementation feasibility

Acknowledgements

Tavey Capps Casey Collins Jason Elliott Chisato Gomez Chris Dougher Dr. Emily Klein Dr. Josiah Knight