

BASS CONNECTIONS

Aashna Aggarwal, Dipro Bhowmik, Samuel Corwin, Will Yang, Yan Cheng, Yao Shengjie, Lauren Shum, Jasmine Tan, Tianlin Duan

Objectives

Duke Commitment to Carbon Neutrality and Climate Action

Carbon Emission Reductions on Duke's Campus

Influence Capital Investment Decisions

Impacting sustainability decisions in new construction and energy projects on campus

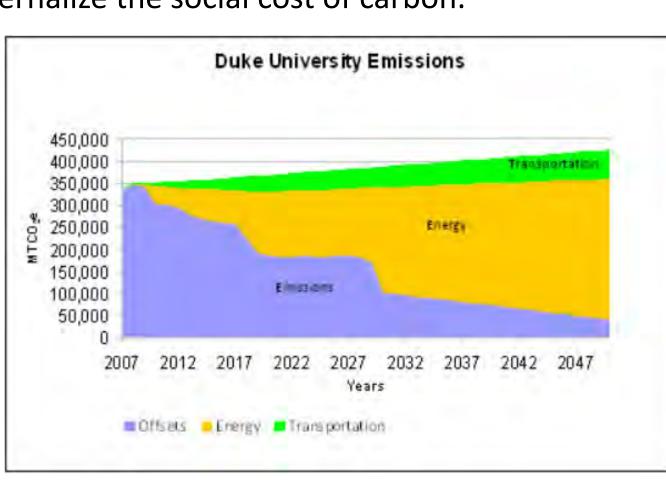
Influence End User Behavior

Targeting the behavioral aspect of energy usage and communicating energy usage

Recommendations

Background

Why Carbon Policy?


Carbon-emitting entities can reduce emissions and internalize the social cost of carbon. Carbon policies can:

- Impact decision-making processes
- Reduce emissions through energy-related capital investment
- Provide energy-related research opportunities

Why Duke?

Duke is committed to being carbon-neutral by 2024. Coupled with offsets and energy efficiency, a carbon policy can move the university closer to this goal. Institutions that have or are planning to implement carbon incentivizing policies include:

- Universities: Yale, Princeton, UC Berkeley
- Corporations: Microsoft, British Petroleum (BP)

Figure 1: potential reduction in emissions according to Duke's Climate Action Plan

Energy at Duke

All utilities are managed by the Duke Utilities & Engineering Services (DUES) group within the Facilities Management Department. DUES is responsible for utility billing and administrative services, planning, operation, maintenance, and expansion of the University's infrastructure from the point of generation to the point to of delivery. Three major utilities at Duke include:

Electricity: Purchased from Duke Energy, mainly responsible for energy consumption from lighting, electric appliances, and other equipment on campus.

Chilled Water: From Central Chilled Water System, responsible for space cooling on campus. **Steam**: Generated from two campus plants, responsible for space heating on campus.

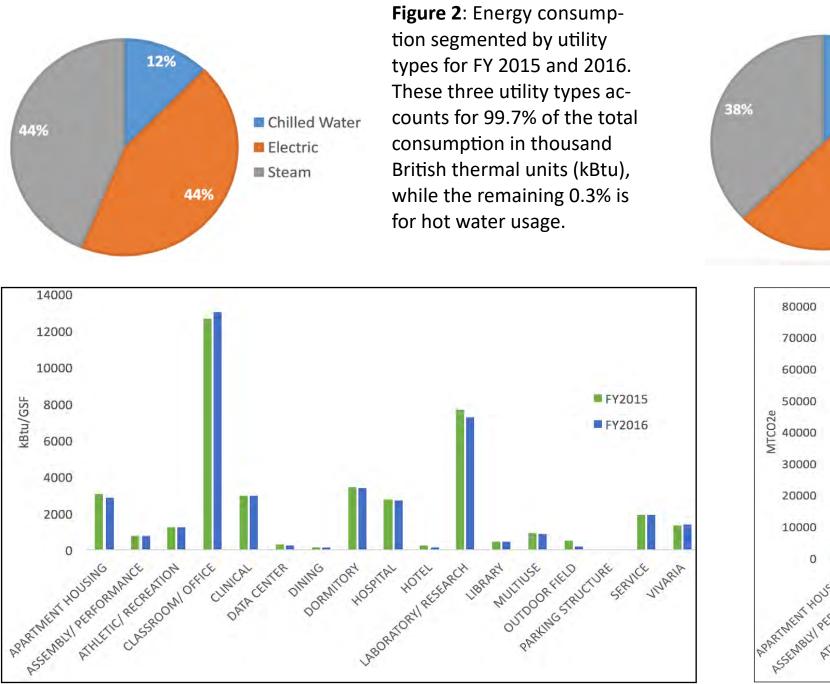
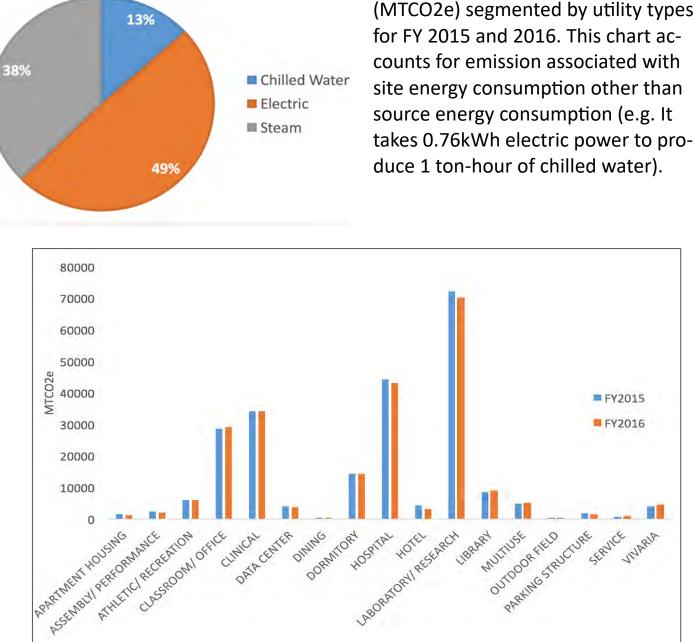



Figure 4: Energy consumption segmented by building primary uses for FY2015 8 2016. This chart shows that classrooms and research related buildings have the highest carbon emission intensity (total carbon emission per gross square feet).

Greenhouse Gas Emissions

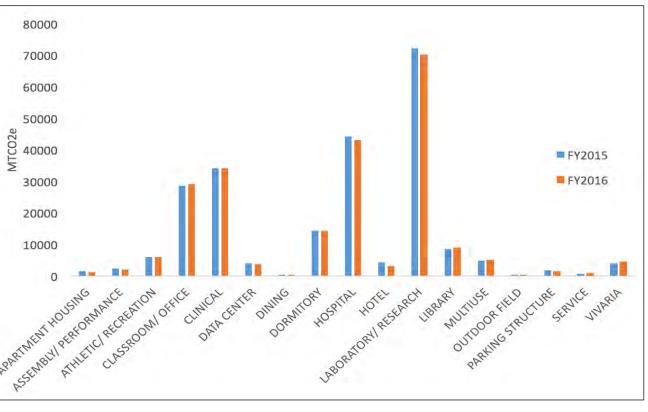
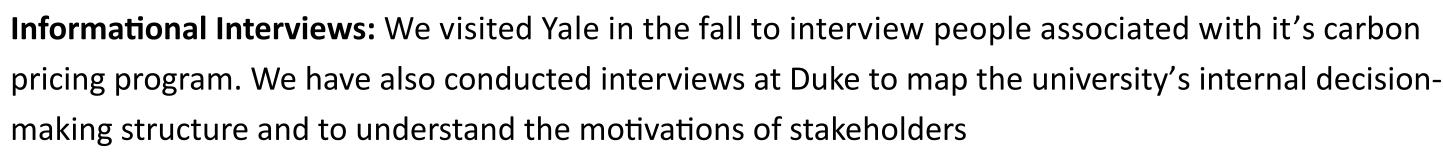


Figure 5: Carbon emission levels (MTCO2e) segmented by building's primary uses for FY2015 & 2016. Labs and research-related buildings account for the most GHG emissions.


Energy Reporting and Carbon Pricing at Duke University

Process

Literature

Review

Capital Investments

End Users

Literature Review: To better understand the global state of carbon policies, we have reviewed existing and planned carbon policies for countries, states, universities, and corporations. Along with interviews, this process informs our evaluation of different policies.

Policy Evaluation

Our policy evaluation includes two primary questions:

1. Should our proposed policy collect revenue, or should collected money be distributed back to taxpayers in a revenue-neutral model?

2. What policy design is the most effective: a cap-and-trade, a tax, or a hybrid? For both decision processes, we are evaluating based on 6 main criteria:

Evaluation Criteria	Purpose
Implementation	What are the political and institutional roadblock
Feasibility	over another?
Emissions	What sort of policy has the largest likelihood of q
Reduction	campus emissions?
Research and	What policy design option best positions Duke to
Institutional Value	mate and sustainability leader among higher edu
Student	How can Duke students be a part of the proposed
Engagement	istration of the program and associated research
Long-Term	A carbon policy is one part of Duke's larger push
Feasibility	so what policy design has the best chance of long
Behavioral	What design scheme is most likely to influence be
Incentives	pus? Changes may include different processes for
	efficiency retrofits or new building construction.

Obstacles

Lack of uniformity among energy billing processes for different departments Significant variation exists between who pays for energy and how it is monitored amongst buildings and departments. This complicates the proposal for a one-size-fits-all solution to a carbon policy.

Financial and administrative difficulties to implementing a pricing scheme

A pricing scheme results in a financial and administrative strain on all stakeholders. Due to varying agendas, balancing the needs of all stakeholders involved, such as facilities, administration, and individual departments presents a challenge.

Difficulty in ensuring fairness of a pricing scheme

Departments often share the space in buildings and the nature of their needs varies, ranging from lab space to offices to classrooms. Building profile also varies considerably, ranging from new, energyefficient buildings to century-old buildings. As a result, equitably billing departments within a carbon policy presents a formidable challenge.

Figure 3: Carbon Emissions (MTCO2e) segmented by utility types

tutional roadblocks that favor one option

gest likelihood of quickly driving down on-

positions Duke to continue serving as a cliamong higher education institutions?

art of the proposed policy, through admin-

sociated research projects?

Ouke's larger push towards climate neutrality, best chance of long-term success?

kely to influence behavioral changes on camerent processes for approving energy-

Lessons Learned

Need to clarify energy billing process

The current energy billing process is quite complicated, involving various software platforms and dozens of employees. Different departments also have different processes in place for paying their bills.

Importance of stakeholder buy-in Building stakeholder buy-in is vital for the longevity of a carbon charge program. All departments must have a place at the table because all will be impacted by a carbon policy.

Need to influence decision-making for capital investments The current capital investment decision-making process, such as construction of new buildings and energy-efficiency retrofits, does not account for a social cost of carbon.

Need to supply end-users with usage information

Currently, departments are not aware of specific energy consumption data because it is nested alongside various other services into one "Facilities" fee. Educating stakeholders about their actual energy consumption is a crucial first step to motivating change and obtaining buy-in.

Streamline energy billing process The energy billing process at Duke should be simplified to allow for a carbon charge to be levied as part of a carbon policy. One main component of it is to introduce carbon charge as a line item in the

Conduct pilot study

A pilot study will help departments with the transition to a carbon charge program. Benefits include: • Allowing administrators to identify areas of excellence and improvements necessary • Opportunity for departments and end-users to give feedback before actual implementation

Form management committee to ensure continuity of project

energy bills departments receive.

There is a need for a specialized management committee to serve the administration and communications aspects of a carbon pricing program. This committee will also help retain program expertise.

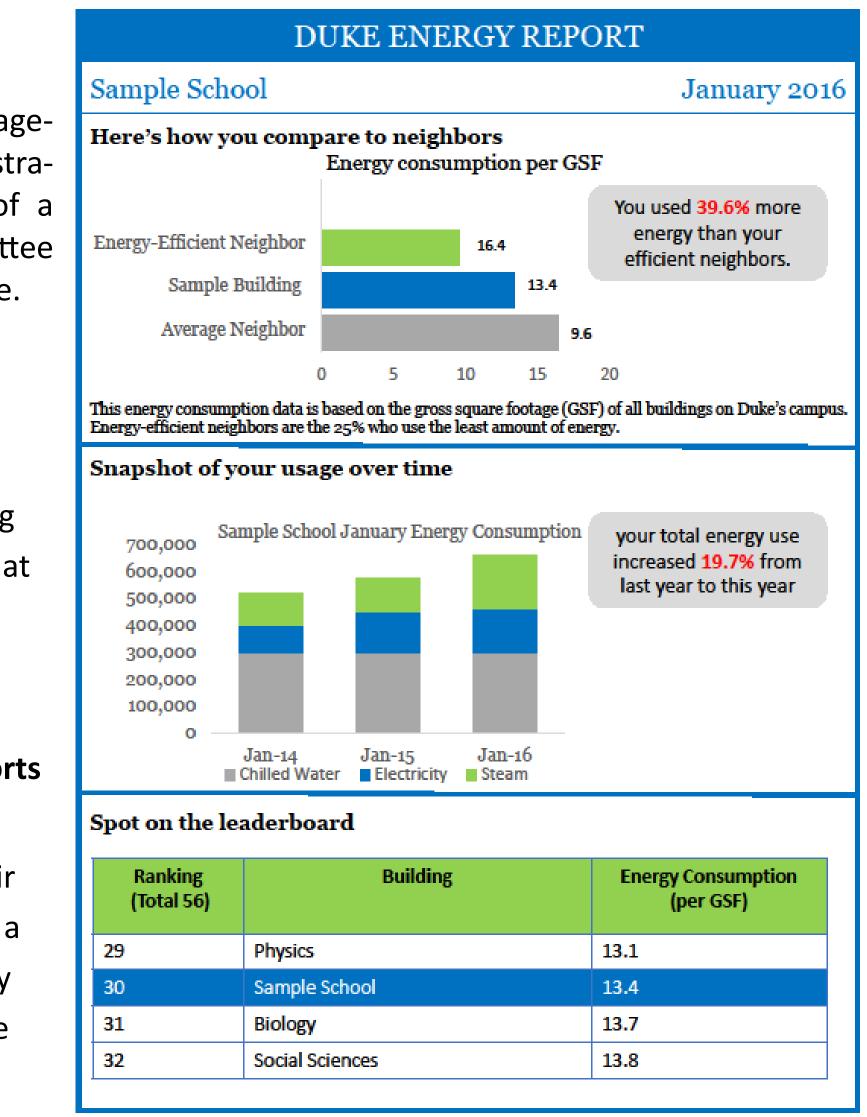
Implement shadow pricing

Given that current capital investment projects do not take into account a

social cost of carbon, a shadow pricing scheme should be implemented so that potential carbon emissions are taken

into account when making decisions.

Distribute departmental energy reports to heads of departments


To give end-users a better idea of their energy consumption pattern, there is a need to design a departmental energy report which will be distributed to the heads of various departments to

influence usage. A sample of the energy report is attached:

Moving Forward

For more information about your energy bill/ complete leaderboards and energy efficiency tips visit: <insert url>